图书介绍
Fundamentals of Communications Systems2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- Michael P.Fitz 著
- 出版社: The McGraw-Hill Companies
- ISBN:
- 出版时间:2007
- 标注页数:634页
- 文件大小:225MB
- 文件页数:665页
- 主题词:
PDF下载
下载说明
Fundamentals of Communications SystemsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Introduction1
1.1 Historical Perspectives on Communication Theory1
1.2 Goals for This Text3
1.3 Modern Communication System Engineering4
1.4 Technology’s Impact on This Text6
1.5 Book Overview7
1.5.1 Mathematical Foundations7
1.5.2 Analog Communication8
1.5.3 Noise in Communication Systems9
1.5.4 Fundamentals of Digital Communication10
1.6 Homework Problems10
PART 1 MATHEMATICAL FOUNDATIONS13
Chapter 2 Signals and Systems Review15
2.1 Signal Classification15
2.1.1 Energy versus Power Signals15
2.1.2 Periodic versus Aperiodic18
2.1.3 Real versus Complex Signals19
2.1.4 Continuous Time Signals versus Discrete Time Signals20
2.2 Frequency Domain Characterization of Signals20
2.2.1 Fourier Series20
2.2.2 Fourier Transform23
2.2.3 Bandwidth of Signals28
2.2.4 Fourier Transform Representation of Periodic Signals30
2.2.5 Laplace Transforms32
2.3 Linear Time-Invariant Systems32
2.4 Utilizing Matlab37
2.4.1 Sampling37
2.4.2 Integration38
2.4.3 Commonly Used Functions38
2.5 Homework Problems39
2.6 Example Solutions47
2.7 Miniprojects50
2.7.1 Project 150
2.7.2 Project 251
Chapter 3 Review of Probability and Random Variables53
3.1 Axiomatic Definitions of Probability53
3.2 Random Variables58
3.2.1 Cumulative Distribution Function58
3.2.2 Probability Density Function60
3.2.3 Moments and Statistical Averages61
3.2.4 The Gaussian Random Variable62
3.2.5 A Transformation of a Random Variable64
3.3 Multiple Random Variables66
3.3.1 Joint Density and Distribution Functions66
3.3.2 Joint Moments and Statistical Averages68
3.3.3 Two Gaussian Random Variables68
3.3.4 Transformations of Random Variables71
3.3.5 Central Limit Theorem73
3.3.6 Multiple Dimensional Gaussian Random Variables74
3.4 Homework Problems75
3.5 Example Solutions85
3.6 Miniprojects88
3.6.1 Project 188
Chapter 4 Complex Baseband Representation of Bandpass Signals91
4.1 Introduction91
4.2 Baseband Representation of Bandpass Signals92
4.3 Visualization of Complex Envelopes96
4.4 Spectral Characteristics of the Complex Envelope99
4.4.1 Basics99
4.4.2 Bandwidth of Bandpass Signals103
4.5 Power of Carrier Modulated Signals104
4.6 Linear Systems and Bandpass Signals104
4.7 Conclusions108
4.8 Homework Problems108
4.9 Example Solutions120
4.10 Miniprojects123
4.10.1 Project 1123
4.10.2 Project 2123
PART 2 ANALOG COMMUNICATION125
Chapter 5 Analog Communications Basics127
5.1 Message Signal Characterization127
5.2 Analog Transmission131
5.2.1 Analog Modulation132
5.2.2 Analog Demodulation132
5.3 Performance Metrics for Analog Communication134
5.4 Preview of Pedagogy137
5.5 Homework Problems138
5.6 Example Solutions141
Chapter 6 Amplitude Modulation145
6.1 Linear Modulation145
6.1.1 Modulator and Demodulator149
6.1.2 Coherent Demodulation150
6.1.3 DSB-AM Conclusions152
6.2 Affine Modulation152
6.2.1 Modulator and Demodulator156
6.2.2 LC-AM Conclusions160
6.3 Quadrature Modulations160
6.3.1 VSB Filter Design161
6.3.2 Single Sideband AM163
6.3.3 Modulator and Demodulator166
6.3.4 Transmitted Reference Based Demodulation167
6.3.5 Quadrature Modulation Conclusions171
6.4 Homework Problems171
6.5 Example Solutions186
6.6 Miniprojects188
6.6.1 Project 1189
6.6.2 Project 2189
6.6.3 Project 3190
Chapter 7 Analog Angle Modulation191
7.1 Angle Modulation191
7.1.1 Angle Modulators196
7.2 Spectral Characteristics197
7.2.1 A Sinusoidal Message Signal197
7.2.2 General Results204
7.3 Demodulation of Angle Modulations209
7.4 Comparison of Analog Modulation Techniques214
7.5 Homework Problems215
7.6 Example Solutions227
7.7 Miniprojects229
7.7.1 Project 1229
7.7.2 Project 2230
Chapter 8 More Topics in Analog Communications231
8.1 Phase-Locked Loops231
8.1.1 General Concepts231
8.1.2 PLL Linear Model234
8.2 PLL-Based Angle Demodulation234
8.2.1 General Concepts234
8.2.2 PLL Linear Model236
8.3 Multiplexing Analog Signals238
8.3.1 Quadrature Carrier Multiplexing239
8.3.2 Frequency Division Multiplexing240
8.4 Conclusions243
8.5 Homework Problems243
8.6 Example Solutions249
8.7 Miniprojects250
8.7.1 Project 1250
PART 3 NOISE IN COMMUNICATIONS SYSTEMS251
Chapter 9 Random Processes253
9.1 Basic Definitions254
9.2 Gaussian Random Processes257
9.3 Stationary Random Processes261
9.3.1 Basics262
9.3.2 Gaussian Processes263
9.3.3 Frequency Domain Representation267
9.4 Thermal Noise271
9.5 Linear Systems and Random Processes275
9.6 The Solution of the Canonical Problem279
9.7 Homework Problems282
9.8 Example Solutions294
9.9 Miniprojects296
9.9.1 Project 1296
9.9.2 Project 2296
Chapter 10 Noise in Bandpass Communication Systems299
10.1 Bandpass Random Processes302
10.2 Characteristics of the Complex Envelope304
10.2.1 Three Important Results304
10.2.2 Important Corollaries307
10.3 Spectral Characteristics310
10.4 The Solution of the Canonical Bandpass Problem313
10.5 Complex Additive White Gaussian Noise316
10.6 Conclusion317
10.7 Homework Problems317
10.8 Example Solutions325
10.9 Miniprojects327
10.9.1 Project328
Chapter 11 Fidelity in Analog Demodulation329
11.1 Unmodulated Signals329
11.2 Bandpass Demodulation332
11.2.1 Coherent Demodulation333
11.3 Coherent Amplitude Demodulation334
11.3.1 Coherent Demodulation334
11.4 Noncoherent Amplitude Demodulation337
11.5 Angle Demodulations340
11.5.1 Phase Modulation340
11.5.2 Frequency Modulation343
11.6 Improving Fidelity with Pre-Emphasis345
11.7 Final Comparisons347
11.8 Homework Problems348
11.9 Example Solutions354
11.10 Miniprojects357
11.10.1 Project 1357
11.10.2 Project 2357
PART 4 FUNDAMENTALS OF DIGITAL COMMUNICATION359
Chapter 12 Digital Communication Basics361
12.1 Digital Transmission362
12.1.1 Digital Modulation362
12.1.2 Digital Demodulation363
12.2 Performance Metrics for Digital Communication364
12.2.1 Fidelity364
12.2.2 Complexity365
12.2.3 Bandwidth Efficiency366
12.2.4 Other Important Characteristics367
12.3 Some Limits on Performance of Digital Communication Systems368
12.4 Conclusion370
12.5 Homework Problems371
12.6 Example Solutions374
12.7 Miniprojects374
12.7.1 Project 1375
Chapter 13 Optimal Single Bit Demodulation Structures377
13.1 Introduction377
13.1.1 Statistical Hypothesis Testing379
13.1.2 Statistical Hypothesis Testing in Digital Communications381
13.1.3 Digital Communications Design Problem382
13.2 Minimum Probability of Error Bit Demodulation383
13.2.1 Characterizing the Filter Output385
13.2.2 Uniform A Priori Probability387
13.3 Analysis of Demodulation Fidelity390
13.3.1 Erf Function391
13.3.2 Uniform A Priori Probability392
13.4 Filter Design394
13.4.1 Maximizing Effective SNR394
13.4.2 The Matched Filter396
13.4.3 MLBD with the Matched Filter397
13.4.4 More Insights on the Matched Filter399
13.5 Signal Design401
13.6 Spectral Characteristics404
13.7 Examples406
13.7.1 Frequency Shift Keying406
13.7.2 Phase Shift Keying412
13.7.3 Discussion415
13.8 Homework Problems416
13.9 Example Solutions426
13.10 Miniprojects431
13.10.1 Project 1431
13.10.2 Project 2433
Chapter 14 Transmitting More Than One Bit435
14.1 A Reformulation for 1 Bit Transmission435
14.2 Optimum Demodulation437
14.2.1 Optimum Word Demodulation Receivers438
14.2.2 Analysis of Demodulation Fidelity441
14.2.3 Union Bound444
14.2.4 Signal Design450
14.3 Examples451
14.3.1 M-ary FSK451
14.3.2 M-ary PSK455
14.3.3 Discussion460
14.4 Homework Problems461
14.5 Example Solutions471
14.6 Miniprojects474
14.6.1 Project 1475
Chapter 15 Managing the Complexity of Optimum Demodulation477
15.1 Linear Modulations478
15.1.1 MLWD for Linear Modulation479
15.1.2 Error Rate Evaluation for Linear Modulation482
15.1.3 Spectral Characteristics of Linear Modulation486
15.1.4 Example:Square Quadrature Amplitude Modulation486
15.1.5 Summary of Linear Modulation486
15.2 Orthogonal Modulations489
15.3 Orthogonal Modulation Examples492
15.3.1 Orthogonal Frequency Division Multiplexing492
15.3.2 Orthogonal Code Division Multiplexing498
15.3.3 Binary Stream Modulation502
15.4 Conclusions506
15.5 Homework Problems507
15.6 Example Solutions524
15.7 Miniprojects529
15.7.1 Project 1530
15.7.2 Project 2530
15.7.3 Project 3530
Chapter 16 Spectrally Efficient Data Transmission533
16.1 Spectral Containment533
16.2 Squared Cosine Pulse535
16.3 Spectral Shaping in OFDM537
16.4 Spectral Shaping in Linear Stream Modulations539
16.5 Testing Orthogonal Modulations543
16.5.1 The Scatter Plot544
16.5.2 Stream Modulations547
16.6 Conclusions550
16.7 Homework Problems550
16.8 Example Solutions554
16.9 Miniprojects555
16.9.1 Project 1555
16.9.2 Project 2557
16.9.3 Project 3558
16.9.4 Project 4559
Chapter 17 Orthogonal Modulations with Memory561
17.1 Canonical Problems561
17.2 Orthogonal Modulations with Memory562
17.2.1 MLWD for Orthogonal Modulations with Memory564
17.2.2 An Example OMWM Providing Better Fidelity565
17.2.3 Discussion567
17.3 Spectral Characteristics of Stream OMWM569
17.3.1 An Example OMWM with a Modified Spectrum569
17.3.2 Spectrum of OMWM for Large Kb571
17.4 Varying Transmission Rates with OMWM576
17.4.1 Spectrum of Stream Modulations with Nnm>1577
17.4.2 Example R<1:Convolutional Codes581
17.4.3 Example R>1:Trellis Codes583
17.4.4 Example for Spectral Shaping:Miller Code586
17.5 Conclusions588
17.6 Homework Problems590
17.7 Example Solutions596
17.8 Miniprojects598
17.8.1 Project 1598
Appendix A Useful Formulas601
Appendix B Notation605
Appendix C Acronyms609
Appendix D Fourier Transforms:f versus ω611
Appendix E Further Reading and Bibliography613
Index617