图书介绍

计算方法2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

计算方法
  • 黄友谦主编 著
  • 出版社: 北京:高等教育出版社
  • ISBN:7040048787
  • 出版时间:1994
  • 标注页数:273页
  • 文件大小:6MB
  • 文件页数:282页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

计算方法PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

引论1

习题6

第一章 一无非线性代数方程的求解8

1 对半分法8

2 一般迭代法10

3 牛顿法15

4 正割法19

习题22

1 高斯(Gauss)消元法24

第二章 解线性代数方程组的直接法24

2 矩阵的 LU 分解35

3 乔列夫斯基(Cholesky)方法40

4 向量的范数43

习题45

第三章 解线性代数方程组的迭代法48

1 迭代法的基本概念48

2 雅可比(Jacobi)和高斯-塞德尔(Gauss-Seidel)迭代52

3 松弛(SOR)迭代56

4 共轭梯度法(Conjugate Gradient Methods)59

习题65

第四章 矩阵特征值的计算67

1 幂法和反幂法67

2 矩阵的 QR 分解及其应用71

3 Hessenberg 矩阵及其应用81

4 求对称矩阵特征值的雅可比(Jacobi)方法88

习题92

1 线性最小二乘法问题95

第五章 最小二乘法95

2 矩阵的奇异值分解102

3 积分意义下的最小二乘法105

4 函数按正交函数系展开107

习题115

第六章 插值方法117

1 代数插值的拉格朗日公式117

2 代数插值的牛顿公式120

3 埃尔米特插值127

4 三次样条插值129

5 张力样条135

6 复指数插值与快速傅立叶变换(FFT)137

习题144

第七章 数值积分和数值微分149

1 中矩形、梯形和辛浦生求积公式149

2 复化求积公式153

3 龙贝格求积方法156

4 高斯型求积公式160

5 数值微分165

习题169

第八章 常微分方程初值问题数值解171

1 解常微初值问题的单步法171

2 单步法的理论分析178

3 预报-校正方法185

4 分歧解192

习题196

第九章 线性规划198

1 问题的提出198

2 解的代数性质201

3 单纯形方法206

4 对偶问题215

习题219

第十章 非线性代数方程组求解222

1 求解非线性代数方程组的迭代法222

2 牛顿法226

3 非线性最小二乘法228

4 非线性规划初步233

习题241

第十一章 贝齐尔和 B 样条曲线243

1 伯恩斯坦多项式243

2 贝齐尔曲线246

3 B 样条函数248

4 B 样条曲线252

5 自由曲线设计255

习题261

附录1 矩阵范数及其应用264

附录2 贝努里多项式及其应用269

热门推荐