图书介绍

环境生物技术 原理与应用 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

环境生物技术 原理与应用 英文
  • (美)里特曼,(美)麦卡蒂著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:9787302302582
  • 出版时间:2012
  • 标注页数:760页
  • 文件大小:161MB
  • 文件页数:775页
  • 主题词:环境生物学-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

环境生物技术 原理与应用 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 BASICS OF MICROBIOLOGY1

1.1 The Cell2

1.2 Taxonomy and Phylogeny4

1.3 Prokaryotes6

1.3.1 Bacteria7

1.3.2 Archaea21

1.4 Eukarya22

1.4.1 Fungi22

1.4.2 Algae26

1.4.3 Protozoa31

1.4.4 Other Multicellular Microorganisms34

1.5 Viruses36

1.6 Infectious Disease37

1.7 Biochemistry42

1.8 Enzymes43

1.8.1 Enzyme Reactivity46

1.8.2 Regulating the Activity of Enzymes51

1.9 Energy Capture51

1.9.1 Electron and Energy Carriers51

1.9.2 Energy and Electron Investments54

1.10 Metabolism55

1.10.1 Catabolism58

1.10.2 Anabolism76

1.10.3 Metabolism and Trophic Groups80

1.11 Genetics and Information Flow80

1.12 Deoxyribonucleic Acid(DNA)82

1.12.1 The Chromosome84

1.12.2 P1asmids87

1.12.3 DNA Replication87

1.13 Ribonucleic Acid(RNA)88

1.13.1 Transcription88

1.13.2 Messenger RNA(mRNA)90

1.13.3 Transfer RNA(tRNA)90

1.13.4 Translation and the Ribosomal RNA(rRNA)91

1.13.5 Translation92

1.13.6 Regulation94

1.14 Phylogeny94

1.14.1 The Basics of Phylogenetic Classification97

1.15 Microbial Ecology99

1.15.1 Selection100

1.15.2 Exchange of Materials102

1.15.3 Adaptation107

1.16 Tools to Study Microbial Ecology110

1.16.1 Traditional Enrichment Tools111

1.16.2 Molecular Tools112

1.16.3 Multispecies Modeling119

1.17 Bibliography120

1.18 Problems121

Chapter 2 STOICHIOMETRY AND BACTERIAL ENERGETICS126

2.1 An Example Stoichiometric Equation126

2.2 Empirical Formulas for Microbial Cells128

2.3 Substrate Partitioning and Cellular Yield130

2.4 Energy Reactions132

2.5 Overall Reactions for Biological Growth141

2.5.1 Fermentation Reactions145

2.6 Energetics and Bacterial Growth150

2.6.1 Free Energy ofthe Energy Reaction151

2.7 Yield Coefficient and Reaction Energetics155

2.8 Oxidized Nitrogen Sources159

2.9 Bibliography161

2.10 Problems161

Chapter 3 MICROBIAL KINETICS165

3.1 Basic Rate Expressions165

3.2 Parameter Values168

3.3 Basic Mass Balances171

3.4 Mass Balances on Inert Biomass and Volatile Solids175

3.5 Soluble Microbial Products176

3.6 Nutrients and Electron Acceptors183

3.7 Input Active Biomass186

3.8 Hydrolysis of Particulate and Polymeric Substrates188

3.9 Inhibition191

3.10 Other Alternate Rate Expressions197

3.11 Bibliography198

3.12 Problems199

Chapter 4 BIOFILM KINETICS207

4.1 Microbial Aggregation207

4.2 Why Biofilms?208

4.3 The Idealized Biofilm208

4.3.1 Substrate Phenomena210

4.3.2 The Biofilm Itself213

4.4 The Steady-State Biofilm214

4.5 The Steady-State-Biofilm Solution215

4.6 Estimating Parameter Values220

4.7 Average Biofilm SRT225

4.8 Completely Mixed Biofilm Reactor225

4.9 Soluble Microbial Products and Inert Biomass228

4.10 Trends in CMBRPerformance231

4.11 Normalized Surface Loading233

4.12 Nonsteady-State Biofilms239

4.13 Special-Case Biofilm Solutions245

4.13.1 Deep Biofilms246

4.13.2 Zero-Order Kinetics246

4.14 Bibliography247

4.15 Problems248

Chapter 5 REACTORS261

5.1 Reactor Types261

5.1.1 Suspended-Growth Reactors262

5.1.2 Biofilm Reactors264

5.1.3 Reactor Arrangements266

5.2 Mass Balances267

5.3 A Batch Reactor270

5.4 A Continuous-Flow Stirred-Tank Reactor with Effluent Recycle273

5.5 A Plug-Flow Reactor275

5.6 A Plug-Flow Reactor with Effluent Recycle277

5.7 Reactors with Recycle of Settled Cells280

5.7.1 CSTR with Settling and Cell Recycling280

5.7.2 Evaluation of Assumptions286

5.7.3 Plug-Flow Reactor with Settling and Cell Recycle287

5.8 Using Alternate Rate Models289

5.9 Linking Stoichiometric Equations to Mass Balance Equations289

5.10 Engineering Design of Reactors292

5.11 Reactors in Series296

5.12 Bibliography300

5.13 Problems300

Chapter 6 THE ACTIVATED SLUDGE PROCESS307

6.1 Characteristics of Activated Sludge308

6.1.1 Microbial Ecology308

6.1.2 Oxygen and Nutrient Requirements311

6.1.3 Impacts of Solids Retention Time312

6.2 Process Configurations313

6.2.1 Physical Configurations313

6.2.2 Oxygen Supply Modifications319

6.2.3 Loading Modifications322

6.3 Design and Operating Criteria323

6.3.1 Historical Background324

6.3.2 Food-to-Microorganism Ratio324

6.3.3 Solids Retention Time326

6.3.4 Comparison of Loading Factors329

6.3.5 Mixed-Liquor Suspended Solids,the SVI,and the Recycle Ratio330

6.3.6 Eckenfelder and McKirney Equations334

6.4 Aeration Systems335

6.4.1 Oxygen-Transfer and Mixing Rates335

6.4.2 Diffused Aeration Systems338

6.4.3 Mechanical Aeration Systems339

6.5 Bulking and Other Sludge-Settling Problems340

6.5.1 Bulking Sludge340

6.5.2 Foaming and Scum Control344

6.5.3 Rising Sludge345

6.5.4 Dispersed Growth and Pinpoint Floc345

6.5.5 Viscous Bulking346

6.5.6 Addition of Polymers346

6.6 Activated Sludge Design and Analysis346

6.7 Analysis and Design of Settlers353

6.7.1 Activated-Sludge Properties353

6.7.2 Settler Components355

6.7.3 Loading Criteria360

6.7.4 Basics of Flux Theory362

6.7.5 State-Point Analysis368

3.7.6 Connecting the Settler and Aeration Tank374

6.7.7 Limitations of State-Point Analysis374

6.8 Centrifugal Separations375

6.9 Membrane Separations375

6.10 Bibliography378

6.11 Problems380

Chapter 7 LAGOONS394

7.1 Aerated Lagoons394

7.2 Stabilization Lagoons400

7.3 Types of Stabilization Lagoons401

7.4 Aerobic Stabilization Lagoons402

7.4.1 Basic Equations403

7.4.2 Solar Energy Input and Utilization Efficiency405

7.4.3 BODLRemoval407

7.4.4 Kinetics of Phototrophic Growth412

7.4.5 Facultative Stabilization Lagoons416

7.4.6 Surface BOD5Loading Rates416

7.4.7 First-Order Kinetics417

7.5 Anaerobic Stabilization Lagoons422

7.6 Series Operation423

7.7 Coliform Reduction424

7.8 Lagoon Design Details427

7.9 Removing Suspended Solids fromtheLagoonEffluent427

7.10 Wetlands Treatment429

7.11 Bibliography430

7.12 Problems431

Chapter 8 AEROBIC BIOFILM PROCESSES434

8.1 Biofilm Process Considerations435

8.2 Trickling Filters and Biological Towers438

8.3 Rotating Biological Contactors451

8.4 Granular-Media Filters456

8.5 Fluidized-Bed and Circulating-Bed Biofilm Reactors457

8.6 Hybrid Biofilm/Suspended-Growth Processes463

8.7 Bibliography464

8.8 Problems465

Chapter 9 NITRIFICATION470

9.1 Biochemistry and Physiology of Nitrifying Bacteria470

9.2 Common Process Considerations474

9.3 Activated Sludge Nitrification:One-Sludge Versus Two-Sludge474

9.4 Biofilm Nitrificafion483

9.5 Hybrid Processes486

9.6 The Role of the Input BODL:TKN Ratio488

9.7 The ANAMMOX Process488

9.8 Bibliography489

9.9 Problems490

Chapter 10 DENITRIFICATION497

10.1 Physiology of Denitrifying Bacteria497

10.2 Tertiary Denitrification501

10.2.1 Activated Sludge503

10.2.2 Biofilm Processes506

10.3 One-Sludge Denitrification508

10.3.1 Basic One-Sludge Strategies509

10.3.2 Variations on the Basic One-Sludge Processes512

10.3.3 Quantitative Analysis of One-Sludge Denitrification515

10.4 Bibliography524

10.5 Problems525

Chapter11 PHOSPHORUS REMOVAL535

11.1 Normal Phosphorus Uptake into Biomass535

11.2 Precipitation by Metal-Salts Addition to a Biological Process537

11.3 Enhanced Biological Phosphorus Removal539

11.4 Bibliography545

11.5 Problems547

Chapter12 DRINKING-WATER TREATMENT550

12.1 Aerobic Biofilm Processes to Eliminate Biological Instability551

12.1.1 BOM Measurement Techniques553

12.1.2 Removing Inorganic Sources of Biological Instability554

12.1.3 Biofilm Pretreatment555

12.1.4 Hybrid Biofiltration558

12.1.5 Slow Biofiltration561

12.2 Release of Microorganisms561

12.3 Biodegradation of Specific Organic Compounds562

1 2.4 Denitrification563

12.5 Bibliography566

12.6 Problems567

Chapter 13 ANAEROBIC TREATMENT BY METHANOGENESIS569

13.1 Uses for Methanogenic Treatment570

13.2 Reactor Configurations573

13.2.1 Completely Mixed573

13.2.2 Anaerobic Contact575

13.2.3 Upflow and Downflow Packed Beds576

13.2.4 F1uidized and Expanded Beds577

13.2.5 Upflow Anaerobic Sludge Blanket578

13.2.6 Miscellaneous Anaerobic Reactors579

13.3 Process Chemistry and Microbiology581

13.3.1 Process Microbiology581

13.3.2 Process Chemistry585

13.4 Process Kinetics604

13.4.1 Temperature Effects604

13.4.2 Reaction Kinetics for a CSTR606

13.4.3 Complex Substrates609

13.4.4 Process Optimization614

13.4.5 Reaction Kinetics for Biofilm Processes616

13.4.6 Kinetics with Hydrolysis as the Limiting Factor618

13.5 Special Factors for the Design of Anaerobic Sludge Digesters622

13.5.1 Loading Criteria623

13.5.2 Mixing624

13.5.3 Heating625

13.5.4 Gas Collection626

13.5.5 Performance626

13.6 Bibliography627

13.7 Problems629

Chapter 14 DETOXIFICATION OF HAZARDOUS CHEMICALS637

14.1 Factors Causing Molecular Recalcitrance639

14.1.1 Molecular Structure640

14.1.2 Environmental Conditions640

14.1.2 Microorganism Presence640

14.2 Syntheric Organic Chemical Classes643

14.3 Energy Metabolism Versus Cometabolism647

14.4 Electron Donor Versus Electron Acceptor648

14.5 Minimum Substrate Concentration(Smin)651

14.6 Biodegradation of Problem Environmental Contaminants653

14.6.1 Syntheric Detergents653

14.6.2 Pesticides654

14.6.3 Hydrocarbons657

14.6.4 Chlorinated Solvents and Other Halogenated Aliphatic Hydrocarbons663

14.6.5 Chlorinated Aromatic Hydrocarbons673

14.6.6 Explosives678

14.6.7 General Fate Modeling for Organic Chemicals680

14.6.8 Inorganic Elements682

14.7 Summary685

14.8 Bibliography685

14.9 Problems689

Chapter 15 BIOREMEDIATION695

15.1 Scope and Characteristics of Contaminants696

15.1.1 Organic Compounds697

15.1.2 Mixtures of Organic Compounds699

15.1.3 Mixtures Created by Codisposal702

15.2 Biodegradability705

15.3 Contaminant Availability for Biodegradation705

15.3.1 Sorption to Surfaces706

15.3.2 Formation of a Nonaqueous Phase708

15.4 Treatability Studies711

15.5 Engineering Strategies for Bioremediation713

15.5.1 Site Characterization713

15.5.2 Engineered In Situ Bioremediation714

15.5.3 Intrinsic In Situ Bioremediation and Natural Attenuation717

15.5.4 In Situ Biobarriers718

15.5.5 Ex Situ Bioremediation719

15.5.6 Phytoremediation720

15.5.7 Bioremediation of Gas-Phage VOCs721

15.6 Evaluating Bioremediation722

15.7 Bibliography725

15.8 Problems728

Appendix A FREE ENERGIES OF FORMATION FOR VARIOUS CHEMICAL SPECIES,25°730

Appendix B NORMALIZED SURFACE-LOADING CURVE739

热门推荐